ELECTRIC FIELD

Electric field is the region around charged particle or charged body in which if another charge is placed, it experiences electrostatic force

Electric field intensity \vec{E} :

Electric field intensity at a point is equal to the electrostatic force experienced by a unit positive point charge both in magnitude and direction.

If a test charge q_0 is placed at a point in an electric field and experiences a force F due to some charges (called source charges), the electric field intensity at that point due to source charges is given by $\vec{E} = \frac{\vec{F}}{q_0}$

If the \vec{E} is to be determined practically then the test charge q_0 should be small otherwise it will affect the charge distribution on the source which is producing the electric field and hence modify the quantity which is measured.

Properties of electric field intensity \vec{E} :

- (i) It is a vector quantity. Its direction is the same as the force experienced by positive charge.
- (ii) Direction of electric field due to positive charge is always away from it while due to negative charge, always towards it.
- (iii) Its S.I. unit is Newton/Coulomb.
- (iv) Its dimensional formula is [MLT⁻³A ⁻¹]
- (v) Electric force on a charge q placed in a region of electric field at a point where the electric field intensity is \vec{E} is given by $\vec{F} = q\vec{E}$.

Electric force on point charge is in the same direction of electric field on positive charge and in opposite direction on a negative charge.

(vi) It obeys the superposition principle, that is, the field intensity at a point due to a system of charges is vector sum of the field intensities due to individual point charges.

i.e.
$$\vec{E} = \vec{E_1} + \vec{E_2} + \vec{E_3} + \dots$$

(vii) It is produced by source charges. The electric field will be a fixed value at a point unless we change the distribution of source charges.